\qquad Period \qquad

Acids \& Bases Ws \#8: Neutralization Reactions

Directions: Use the words below to complete the paragraphs.

Spectator	cation	hydroxide	hydrogen	double-replacement	titration
Water	ionic	equivalence	antacids	Neutralization	indicator
Neutral	acid	pH meter	salt	equal	

In aqueous solutions, neutralization is the reaction of \qquad ions and \qquad ions to form \qquad molecules. In this reaction, a \qquad is also produced. A salt is an compound composed of a \qquad from a base and an anion from an __ Because these ions appear on both sides of the overall ionic equation, they are called
\qquad ions. All neutralization reactions are \qquad reactions.
\qquad are bases which are safe to ingest and are used when the stomach contains too much \qquad These bases react with stomach acid in a \qquad reaction. In this reaction, \qquad amounts of acid and base produce a solution which is \qquad

A \qquad is a controlled neutralization reaction that enables the determination of the amount of acid (or base) in a solution. An appropriate acid-base \qquad or a
\qquad is used to determine when neutralization has occurred. The point at which a neutralization reaction is complete is known as the \qquad point.

Directions: Write the balanced neutralization reaction for each of the following. Assume you have added equal amounts and equal concentrations of a strong acid and a strong base. Name the acid, the base and the salt that is formed.

	Acid	+	Base	\rightarrow	Salt	+	Water
1.	$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$	+	$2 \mathrm{NaOH}(\mathrm{aq})$	\rightarrow	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	+	$2 \mathrm{H}_{2} \mathrm{O}$
Name	Sulfuric Acid	+	Sodium Hydroxide	\rightarrow	Sodium Sulfate	+	Water
2.	$\mathrm{HCl}(\mathrm{aq})$	+	$\mathrm{NaOH}(\mathrm{aq})$	\rightarrow		+	
Name		+		\rightarrow		+	
3	$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$	+	$\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})$	\rightarrow		+	
Name		+		\rightarrow		+	
4.	$\mathrm{HBr}(\mathrm{aq})$	+	$\mathrm{LiOH}(\mathrm{aq})$	\rightarrow		+	
Name		+		\rightarrow		+	
5	$\mathrm{H}_{2} \mathrm{ClO}_{4}(\mathrm{aq})$	+	$\mathrm{Sr}(\mathrm{OH})_{2}(\mathrm{aq})$	\rightarrow		+	
Name		+		\rightarrow		+	
6.	HNO_{3}	+	$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})$	\rightarrow		+	
Name		+		\rightarrow		+	

