\qquad Date \qquad Period \qquad
Chemical Equilibrium Worksheet \#1

1. List four ways to increase the concentration of SO_{3} in the following equilibrium reaction. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \square 2 \mathrm{SO}_{3}(\mathrm{~g})+192.3 \mathrm{KJ}$
2.
3.
4.
5.
6. $\mathrm{N}_{2}+\mathrm{O}_{2} \square 2 \mathrm{NO} \quad \Delta \mathrm{H}=181 \mathrm{~kJ}$

What will happen to the concentration of NO at equilibrium if
a. more O_{2} is added?
b. $\quad N_{2}$ is removed?
c. the pressure on the system is increased?
d. the temperature of the system is increased?
3. How will an increase in temperature or pressure affect each of the following equilibrium?
\uparrow temp Ppressure
a. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \square 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=-92.2 \mathrm{~kJ}$
b. $\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \square \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \Delta \mathrm{H}=41 \mathrm{~kJ}$
c. $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \square 2 \mathrm{NO}(\mathrm{g}) \quad \Delta \mathrm{H}=181 \mathrm{~kJ}$
d. $3 \mathrm{O}_{2}(\mathrm{~g}) \square 2 \mathrm{O}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=285 \mathrm{~kJ}$
4. Methanol, $\mathrm{CH}_{3} \mathrm{OH}$, can be manufactured using the following equilibrium reaction.
$\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \square \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})+$ energy
Predict the effect of the following changes on the equilibrium concentration of $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$.
a. a decrease in temperature
b. an increase in pressure
c. addition of $\mathrm{H}_{2}(\mathrm{~g})$
d. addition of a catalyst
5. What will be the change in the equilibrium concentration of NO_{2} under each of the following conditions for the following equilibrium reaction?
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \square 2 \mathrm{NO}_{2}(\mathrm{~g})+114.6 \mathrm{KJ}$
a. O_{2} is added
b. NO is removed
c. energy is added
d. a catalyst is added
6. In the equilibrium reaction: $4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \square 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{Cl}_{2}(\mathrm{~g})+114.4 \mathrm{KJ}$

Predict the direction of equilibrium shift if the following changes occur
a. the pressure is increased
b. energy is added
c. oxygen is added
d. HCl is removed
e. catalyst is added
7. For each of the following reactions between gases at equilibrium determine the effect on the equilibrium concentrations of the products when the temperature is decreases and when the external pressure on the system is decreased.
a. $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \square 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2} \Delta \mathrm{H}=484 \mathrm{~kJ}$
b. $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \square 2 \mathrm{NO}(\mathrm{g}) \Delta \mathrm{H}=181 \mathrm{~kJ}$
c. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \square 2 \mathrm{NH}_{3}(\mathrm{~g}) \Delta \mathrm{H}=-92.2 \mathrm{~kJ}$
d. $2 \mathrm{O}_{3}(\mathrm{~g}) \square 3 \mathrm{O}_{2}(\mathrm{~g})$
$\Delta \mathrm{H}=-285 \mathrm{~kJ}$
e. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \square 2 \mathrm{HF}(\mathrm{g}) \quad \Delta \mathrm{H}=541 \mathrm{~kJ}$
8. Nitric Oxide, NO, releases $57.3 \mathrm{~kJ} / \mathrm{mol}$ when it reacts with oxygen to give nitrogen dioxide.
a. Write the equation for this reaction.
b. Predict the effect that increasing the temperature will have on:

1. the equilibrium concentrations
2. the speed of formation of NO_{2}
c. Predict how increasing the NO concentration will affect 1 and 2 above.
3. For the reaction: $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})+58.9 \mathrm{KJ} \square 2 \mathrm{NO}_{2}(\mathrm{~g})$ How will the equilibrium concentration of NO_{2} be affected by the following conditions?
a. increase in pressure
b. decrease in temperature
4. Use Le Chatelier's principle to predict how the changes listed will affect the concentration of HI for the following equilibrium reaction: $\quad 9.4 \mathrm{~kJ}+2 \mathrm{HI}(\mathrm{g}) \square \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$
a. a small amount of H_{2} is added.
b. the pressure of the system is increased.
c. the temperature of the system is increased.
d. a catalyst is added.
