\qquad
\qquad

Gas Ws \#4: Ideal Gas Law

Show all your work on separate paper. Circle your final answer with the correct units!

$$
\begin{gathered}
\mathbf{P V}=\mathbf{n R T} \quad \begin{array}{c}
\text { Temperature must be in Kelvin } \\
\mathrm{R}=8.31(\mathrm{~L} \mathrm{kPa}) /(\mathrm{mol} \mathrm{~K}) \\
\mathrm{R}=0.0821(\mathrm{~L} \mathbf{~ a t m}) /(\operatorname{mol~K})
\end{array}
\end{gathered}
$$

1. What is the pressure in atmospheres exerted by a 0.500 mole sample of nitrogen gas in a 10.0 L container at $25.0^{\circ} \mathrm{C}$?
2. What is the volume, in liters, of 0.250 mole of oxygen gas at $20.0^{\circ} \mathrm{C}$ and 0.974 atm of pressure?
3. What mass of chlorine gas, Cl_{2}, in grams, is contained in a 10.0 L tank at $27.0^{\circ} \mathrm{C}$ and 3.50 atm of pressure?
4. An engineer pumps 5.00 moles of carbon monoxide gas into a cylinder that has a capacity of 20.0 L . What is the pressure in kPa of CO inside the cylinder at $25.0^{\circ} \mathrm{C}$?
5. A student collects 425 ml of oxygen at a temperature of $24.0^{\circ} \mathrm{C}$ and a pressure of 0.899 atm . How many moles of oxygen did the student collect?
6. Determine the molar mass of an unknown gas that has a volume of 72.5 ml at a temperature of $68.0^{\circ} \mathrm{C}$, and a pressure of 0.980 atm , and a mass of 0.207 g .
7. A sample of an unknown gas has a mass of 0.116 g . It occupies a volume of 25.0 mL at a temperature of $127^{\circ} \mathrm{C}$ and has a pressure of 155.3 kPa . Calculate the molar mass of the gas.
8. Determine the mass of CO_{2} gas that has a volume of 7.10 L at a pressure of 1.11 atm and a temperature of $31.0^{\circ} \mathrm{C}$.
9. What pressure in atmospheres will 1.36 kg of $\mathrm{N}_{2} \mathrm{O}$ gas exert when it is compressed in a 25.0 L cylinder and its stored in an outdoor shed where the temperature reaches $59.0^{\circ} \mathrm{C}$ during the summer?
10. A large balloon contains 11.7 g of helium. What volume will the helium occupy at an altitude of $1.00 \times$ 10^{4} meters, where the atmospheric pressure is 0.262 atm ant the temperature is $-50.0^{\circ} \mathrm{C}$?
11. The density of dry air at $27.0^{\circ} \mathrm{C}$ and 100.0 kPa is $1.162 \mathrm{~g} / \mathrm{L}$. Us this information to calculate the molar mass of air.
